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SUMMARY

This article presents an overview of eigenproblems that arise in current finite-
element computations. We focus on a set of applications that have been studied
at CERFACS, Centre Furopéen de Recherche et de Formation Avancée en Calcul
Scientifique, and describe the ideas and tools that have been developed to deal with
them. The main characteristics of five different cases are given. We also discuss the
trends as well as the research efforts to understand and tackle new applications.

1 INTRODUCTION

The solution of the equation
Ar = ABx (1)

where A and B are n xn matrices, = is a non null vector and X is a scalar,
has long been an important computation. We recall here that relation (1)
defines a generalized eigenproblem; a standard eigenproblem is obtained when
B is equal to the identity matrix I. Usually, the n possible pairs (A, z),
ergenvalues A and eigenvectors x, that satisfy relation (1) are associated with
fundamental characteristics of differential and integral operators describing
a physical phenomenon. In some applications from chemistry, for instance,
they are related to basic configurations of molecules (hinge-bending motions);
in nuclear power plants, neutron fluxes (the behaviour is super-critical for
a dominant eigenvalue greater than one); and in structural engineering,
dynamic properties of a given model (natural vibration frequencies and mode
shapes). Depending on the complexity, the level of the discretization of
a continuous problem or the precision required for the results, A and B
can reach dimensions of tens of thousands. In practical analyses only a
few eigenpairs (A, z) are considered relevant, either in the extremities of the
spectrum (lower or upper), in an interval (£1,€9) for real solutions or in a
region for complex ones. Although only few are wanted, their evaluation is
usually a time consuming task. The characteristics of a given problem, such
as the sparsity of the operators, should be thus taken into account. Whether
only the eigenvalues or eigenvectors are required becomes also an important
issue. Therefore, the development of new eigensolvers, or the improvement
of existing ones, has been the subject of continuous research [8,18,21,22,25].
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Krylov subspace based methods such as Lanczos [19] and Arnoldi [21]
algorithms have been widely used for treating eigenproblems associated with
very large sparse matrices. They can be shown to perform better than vector
iteration (inverse or direct ), transformation methods (Jacobi, Householder or
Givens) or determinant search in many practical cases. See [7] and [19] for an
overview of those techniques. The Krylov subspace associated with a matrix
A and a non null starting vector ¢ is defined as

K(A,q1,7) = span(q1, Aq1, ... A7 1qp). (2)

The goal of the Lanczos algorithm is the generation of a basis for the
Krylov subspace, so that the orthogonal projection of the original problem
into the basis leads to a smaller problem, involving a tridiagonal matrix
(which is symmetric if A is). Eigensolutions of A are then recovered through
a Rayleigh-Ritz procedure [19]. Conversely, the projection computed by
Arnoldi’s method involves a Hessenberg matrix (if A is nonsymmetric) [21].
Within block Krylov strategies, the starting vector g1 is replaced by a full
rank n x p matrix 1, 1 < p < n, which allows for better convergence
properties when there are multiple eigenvalues and can provide better data
management on some computer architectures. Block tridiagonal and block
Hessenberg matrices are then obtained as projections. The solution of the
reduced problem is in general easy to perform. Moreover, the good news
is that, with Lanczos and Arnoldi based procedures, approximate solutions
(:\7 &) are usually obtained even for small values of j for the associated Krylov
subspace (2) [7,19]. An estimation of the residual ||Az — ;\B:?;HQ (]|-][2 is the
2-norm) can be obtained at very low cost during the basis generation process,
so that # is computed only when it is accurate enough.

The objective of this work is to give an overview of eigenproblems that
arise in current finite element computations and techniques to deal with them.
We have opted not to give further details about computational performance,
the modelling of the physical phenomena or the finite-element formulations.
We focus on the applications being examined at CERFACS, Centre Européen
de Recherche et de Formation Avancée en Calcul Scientifigue, for which
both eigenvalues and eigenvectors are required. In the next section, we
briefly describe the ideas and tools developed at CERFACS for the solution
of very large sparse eigenproblems. In the following, we list a set of
applications and their main characteristics. The first application is a classic
from structural engineering: the determination of free vibration solutions in
dynamic analyses, the challenge now being the really huge problems. The
others are rather innovative: real unsymmetric problems in flutter analysis,
spectral portrait computations, a particular case of the Maxwell equations,
and quadratic eigenproblems associated with electromagnetic waveguides.
Finally, we discuss the trends in the field as well as the present research
efforts to understand and tackle new applications.
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2 KRYLOV SUBSPACE BASED METHODS

Let us consider the standard eigenproblem and assume that the basis for
the Krylov subspace generated by A is given by Q; = [q1, ¢2, ... ¢;], QCJFQJ =1,
computed by either the Lanczos or Arnoldi method. The solutions of the
projected (reduced) problem are assumed to be (6;,s;), 1 = 1,2,...5. Then,
approximate pairs (A, ) are obtained by means of [7,19]

T = Qjsg,
=6,
When the problem is generalized, it can be rewritten as Ay = Ay, where

A= (L_lAL_T) and z = L~ Ty, providing B can be factorized as LL7.
Another possibility is Az = (%)x with A = (A_lB), providing A is invertible
(actually A does not need to be explicitly inverted, a solution of a system
of equations may be performed instead for the basis generation). In such
cases, the basis of vectors are built with the operator A. If both A and B
are singular, a translation of origin may be applied on their characteristic
polynomials. See [10, ch. 10 by Nour-Omid, B.] and [19, ch. 15] for more
details. We assume that B = [ for simplicity and first describe the Lanczos
and Arnoldi methods regardless of roundoff errors. Then, we make some
general remarks upon both techniques and the tools developed at CERFACS.

2.1 The Lanczos Algorithm: Hermitian Matrices
For a Hermitian matrix A, gg = 0, and a starting vector ¢, qfqul =1,

the Lanczos basis generation process can be expressed by the recurrence

gj+18j+1 = rj = Agj — qjaj — ¢j-15; (3)
where a; and 3 are scalars for the Gram-Schmidt orthogonalization of ¢; and
qj—1 with respect to Ag;, and 8j41 = ||rj||2. Then, Az = Az is projected into
Tjs = 6s (ie., QJTAQJ = Tj), where T} is a symmetric tridiagonal matrix:
t; ; =0 whenever i — j| > 1,¢; ; = aj and t; ;11 = tj41; = Bjq1-

2.2 The Arnoldi Algorithm: Non Hermitian Matrices

For a non Hermitian matrix A and a starting vector ¢, qqul =1, the
Arnoldi basis generation process can be expressed by the recurrence

J
Gjr1hjr1y =i = Agj — D dihij (4)
=1

where h;; are scalars for the Gram-Schmidt orthogonalization of g;,
¢ = 1,2,..., with respect to Ag;, and hji1; = ||rj|lo. Then, Az = Az is
projected into Hjs = 6s (i.e., QJTAQj = H;), where H; is a Hessenberg
matrix with coefficients %; ;, which are 0 for ¢ > j + 2.
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2.3 Lanczos and Arnoldi: general remarks

If the techniques are implemented as just described, a loss of
orthogonality among the vectors in Q; is generally observed after some steps.
It is the result of roundoff errors in recurrences (3)-(4), and the convergence
of pairs (/A\, #) as well [7,19]. Once orthogonality is lost, redundant copies of
eigenpairs tend to appear. Therefore, preventive measures, such as selective
orthogonalization or partial reorthogonalization, are commonly employed to
control and keep the orthogonality of Q; within a certain level. See [§],
[10, ch. 10 by Nour-Omid, B.] and [19] for more information.

It is usually assumed (and observed) that the Lanczos and Arnoldi
algorithms find solutions at the extremities of the spectrum.  Their
convergence pattern, however, is strongly related to the eigenvalue
distribution. Therefore, for the determination of interior solutions or those
of small real part, a preconditioning (shift-invert, polynomials) is generally
required [21]. The maximum allowable j can also be reached without the
convergence of all desired solutions. Then, restarting is an alternative way
to proceed and different strategies exist for that purpose [21,22].

2.4 Packages developed at CERFACS

Two main packages which are described below have been developed at
CERFACS for the solution of very large eigenproblems:

a) BLZPACK is an implementation of the block Lanczos algorithm for the
solution of real symmetric eigenproblems [13]. It is intended for the
solution of Ax = ABzx with A positive definite and B semi positive
definite or equal to I. Solutions in a specific interval (£1,&9) or close
to a value ¢ can be found by an automatic transformation of the original
problem into B(A—O'B)_lB;U = (ﬁ)B:{:. The matrices A and B are not
required internally in the code, so that each time a computation involving
either A or B has to be performed, the control is returned to the user
(and such a computation can be specialized for particular applications).

b) ARNCHEB is an implementation of the Arnoldi-Tchebycheff algorithm for
the solution of eigenproblems involving non Hermitian matrices [2,3,4].
The package can be applied to problems Az = ABxz where A is real and
B = I (a collaboration between CERFACS and Aerospatiale), A complex
and B = I, and A complex and B Hermitian positive definite or complex.
CG and GMRES type iterative methods or the LU factorization may be
used for finding solutions in specific regions of the complex plane. In
addition, the implementation is particularly robust to highly nonnormal
operators. A nonnormal operator A satisfies HATA — AATHQ # 0, which
can lead to numerical difficulties for many applications.
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Portability and performance for the aforementioned packages are
achieved by using BLAS kernels and other public domain tools (EISPACK
and LAPACK). The accuracy of the computed solutions is carefully evaluated
by a norm of the type Hfli’ - /A\i'Hz/HAHZ < tol. Moreover, efficient techniques
are used to ensure an adequate level of orthogonality among the vectors of
the basis Q;, overcoming problems caused by finite precision arithmetic.

3 APPLICATIONS

In this section, we describe five different applications related to finite
elements computations. We focus on the eigenproblems obtained instead
of the associated physical phenomena and the element formulation. The
objective i1s to give an idea of the kind of emerging problems that arise
when promising techniques and high performance computers are at hand.
The cases presented form a rather small but illustrative set. All of them
have been studied with Krylov based techniques such as those available in
BLZPACK and ARNCHEB. For quadratic eigenproblems, however, some tools are
still being developed.

3.1 Structural Analysis

The evaluation of dynamic responses in structural engineering analysis
often requires the solution of the equation

Mii 4 Cii + Ku = f(t) (5)

where M, C' and K are the sparse symmetric mass, damping and stiffness
matrices of the model, @, u and u are the accelerations, velocities and
displacements, and f(¢) are the time dependent forces. Depending on the
formulation used for C, the responses for that equation can be obtained by
means of the solutions of the associated eigenproblem [1,10]

K¢ =w?M¢ (6)

where w i1s a free vibration frequency and ¢ a mode shape. Furthermore, the
frequencies and modes allow good insight into the structural model [1,14,23].
The dimensions of M and K reach many thousands for current applications
(such as engine and automobile finite element discretizations) and dimensions
as high as 10 have already been reported.

The free vibration problem defined in (6) can be efficiently solved in any
interval of interest if a shift-invert approach is feasible. With such a strategy,
we deal with the transformed problem [8,17]

1
M(K —oM)"'M¢ = ( M.
— O
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No inversion needs to be performed in practice, since one can generate
a Lanczos basis solving systems of equations through the factorization
(K —oM) = LDLT for a well chosen o (based on the interval of interest).
It is well known, however, that such a factorization may be computationally
expensive for large problems. In addition, the matrix (K — oM) may be
indefinite so that care has to taken during the factorization process [7].
Nevertheless, with that approach the determination and validation of the
sought solutions is feasible, which is an important and attractive feature.
BLZPACK, referred to in the previous section, allows the use of different
factorization and storage schemes in a convenient way. Efficient and reliable
implementations of factorization strategies are available in [9], for instance,
using sparse storage schemes. If the matrices are stored in skyline form, which
is common practice in 2-dimensional finite element analyses, a partitioned
LDLT can be employed. The idea is to work with pieces of the matrix (copied
to and from temporary arrays), as shown in Figure 1, together with matrix-
vector products to perform the required calculations. This combination leads
to very good performance on computers with hierarchical memories [11], in
spite of some overhead introduced by handling the skyline storage.

Figure 1. Partitioned factorization.

3.2 Unsymmetric Problems

Unsymmetric problems appear now in many different fields, such as fluid
dynamics. However, we show here a problem proposed by the Structural
Research and Development Department at Aerospatiale, in Toulouse. It
corresponds to the modelling of a flutter phenomenon, with a coupling of a
torsional vibration and a bending motion of a wing in flight [2,3,4.5]. In such
a case, the equation of motion (5) is “corrected” to

Mii + Ku = Fi (7)

where F' is nonsymmetric and nonnormal, corresponding to an estimation of
the aerodynamic contribution of the discretization points. Then, equation (7)
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can be solved through the eigenpairs of a problem Az = Az, where
A is highly nonnormal, possibly leading to numerical difficulties [2,3,4].
Actually, a whole family of matrices, labeled Tolosa [6], has been obtained
for the application described, depending on the discretization employed.
For large values of n the matrices have multiple and possibly defective
eigenvalues. From the aeroelasticity point of view the eigenvalues of
interest are those of largest imaginary part. The Figure 2 shows some
characteristics of Tolosa: a) the pattern of a matrix of dimension 200, b) the
eigenvalues of a matrix of dimension 2000, c) the departure from normality,
He = HATA - AATH2/||A2||2, as a function of the dimension, and d) the
norm, ||A||2, as a function of the dimension. One can observe, for instance,
that the norm of A varies exponentially with its dimension while the
departure from normality varies linearly. The information provided by Tolosa
was valuable to the understanding of nonnormality effects and to develop
robust eigenvalue codes such as ARNCHEB.
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Figure 2. Tolosa, a flutter analysis.
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3.3 Spectral Portrait Computations

Many computations involving nonsymmetric matrices may fail in the
neighbourhood of singularities. This is basically related to finite precision
arithmetic and the nonnormality of the operators. While a matrix A
has eigenvalues A\, a matrix A + AA has eigenvalues A + A\, where AA
indicates an arbitrary perturbation. However, due to the physical and
numerical properties of a particular problem, A\ can be large even for a small
AA. Situations like this happen in fluid dynamics and electromagnetism
applications [4].

One way of studying the “sensitivity” of a matrix consists in the
introduction of small perturbations to the entries of the matrix and then
examining its resulting perturbed spectrum [15,16]. The perturbed spectrum
can be analyzed through the function

-1
P(z) = logiolll(A — =I)~"[[2[[All2],
where z corresponds to a point in the complex plane and ||(4 — ZI)_1H2 to

the largest singular value of (A — ZI)_l. However, it should be noted that
this singular value is equivalent to

1/ Amin[(4 = 2D)*(4 — D)
where \,,;, indicates the smallest eigenvalue and the * the conjugate
transpose [15,16]. We describe here the utilization of a Hermitian-Lanczos

code [12] to determine the spectral portrait 1)(z) of a nonsymmetric matrix,
i.e., to compute the largest singular value for different values of z. The idea
consists in running the code with the Hermitian matrix (A — 2I)*(A — zI)
until the smallest eigenvalue of the reduced problem reaches a small residual,
which is examined outside the code (reverse communication strategy).
Alternatively, the code can be applied to the augmented Hermitian matrix

[ o]

which has better numerical properties [16]. The matrix studied has
dimension 135 and comes from the Tolosa family described in the previous
section. The spectral portrait obtained is shown in Figure 3, for 16641 values
of z (mesh 128 x 128), in the region of the complex plane defined by the points
(=300 — 250¢), (—300 4 250¢), (200 — 250¢z) and (200 + 250z). In that figure,
the vertical and horizontal axes give the complex and real parts of the plane,
respectively, and the light colours indicate large values of ¥(z). In other
words, those colours indicate the perturbations for which the spectrum of
A suffers important modifications, or the set of eigenvalues of any A + AA,
where ||[AAll2 < €||A]l2, e = 10~ 16 being the machine (double) precision. The
spectral portrait then gives an idea of the values that could be erroneously
considered as eigenvalues.
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Figure 3. The spectral portrait of Tolosa.

3.4 Complex Non Hermitian Problems

In the study of electromagnetic guided waves, the electric and magnetic
fields, respectively E and H, considering a heterogeneous media and the
harmonic case, are given by the Maxwell equations [4]

TOtﬂE +wH =0,
rotﬁH —wkE =0,
divg(pE) = 0,
divg(pH) = 0,

where ¢ 1s the complex unit, w the wave frequency, § a propagation constant,
i the magnetic permeability and p the dielectric permittivity of the media.
Those equations can be discretized by means of a Lagrangian finite-element
formulation. The admissible values of w are then obtained as a function
of 3, by solving a standard eigenvalue problem involving a complex non-
Hermitian matrix based on E or alternatively on H. A generalized eigenvalue
problem involving complex non-Hermitian matrices in also a variant. We
consider a system of the former type, with dimension 105. Its eigenvalue
spectrum is shown in Figure 4 and its singular values are represented in
Figure 5. The package ARNCHEB has been applied to study the eigenvalue
distribution of this problem using complex versions of CG and GMRES type
methods [2,3]. The singular value distribution has been studied with the same
Hermitian-Lanczos code mentioned in the previous section and an augmented
matrix formulation [12]. The singular value decomposition is a clever way of
determining the matrix rank and therefore is a useful tool in the analysis of
systems of equations, for instance [7].
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3.5 Quadratic Problems

Quadratic eigenproblems result, for instance, from the solution of
equation (5) for particular C’s, the solution of the Navier-Stokes equation
or the study of propagation modes in optical fibers. Such problems usually
admit complex solutions and can be linearized through an augmented system
approach. Different strategies can be then applied to solve the linearized
problem, yielding a symmetric generalized eigensystem with indefinite
matrices or a nonsymimetric standard one.

We consider here an application in optical fibers [24]. For a given
frequency w, the goal is to find solutions (modes) of Maxwell equations for
sinusoidal fields of the form

—ifz

E(;L’,y,z) = e(;z:,y)e_ = (et(l’,y) + ez(ai,y)az)e
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which represents an electric field propagation in the z-direction. The complex
scalar 3 is a mode propagation constant and the vector e is projected along
the waveguide axis e, and on the transverse plane e;. Using vector infinite
elements the problem above is rewritten as

32Bz1 + BCTxg — Az =0
pCx1+ Dzg =0

where x1 and z9 are approximate solutions and A, B, C' and D are built
with the basis functions of the approximated subspace. A and B are n x n,
Dismxm, Cism xn, and n & 3 x m. All matrices are real and sparse,
A and D are indefinite and B is positive definite. With a transformation of
the type u = Bz, v = x9 we can define

A 0l (u B C¢Ti(u

o ooy =tle Bl Y
or Az = ABz, where A\ = 2. The matrices A and B are indefinite so
that complex solutions may exist. In addition, spurious zeros solutions are
artificially introduced in (7) due to the structure of A. The patterns of A
and B may look like those depicted in Figure 6, for n = 190 and m = 63.
The corresponding eigenvalue distribution (A) is given in Figure 7.

A Lanczos based code is being developed to study this problem, following
the ideas proposed by Parlett and Chen in [20]. The purpose is to
project Az = ABuz into Tjs = 6);s, so that the basis of vectors satisfies
QJTBQj = (1, with the matrices T; and §); reflecting the indefiniteness of
the original ones. An important issue here is that one can obtain a breakdown
of the type q;-FBQj = 0 for ¢; # 0. A “look-ahead” scheme is then important
for assuring a reliable implementation.

-

Figure 6. Typical patterns of A and B.
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4 CONCLUSIONS

The solution of eigenvalue problems is of extreme importance to
understand many physical phenomena. Therefore, this work listed a non
exhaustive set of eigenvalue applications arising in different fields, where
finite element procedures allow for their modelling and solution. Eigenvalue
calculations, however, use to be costly computational tasks because as the
techniques and computers evolve so do the complexity and size of the
applications. It is a consensus that the computer architectures together
with new applications will influence the eigensolutions extraction softwares.
In many cases, factorizations for a shift-invert approach are not feasible
anymore. In molecular self-consistent-field computations using a p-version
finite element (3-D), for instance, the objective is to reach discretizations
leading to up to 3003 or 1000 unknowns. Hundreds of eigenpairs would be
then desirable for the solution of the associated Hartree-Fock or Schroedinger
equations. However, the current packages (if any computer memory) seem
not to be suited for that. The use and development of new tools (as
preconditionings) are very important to deal with such huge problems.

Currently, there is a proposal for a TMR (Training and Mobility of
Researchers) project to study, develop and analyze important problems in
both academic and industrial worlds at an European level. The partners
are University of Athens, University of Manchester, University of Umea,
CERFACS, Rutherford Appleton Laboratory, Aerospatiale and Thomson-
CSF. The project has been labeled RELEASE, for Reliable and Efficient
Solution of Large-Scale Eigenproblems. There is also an ALLIANCE
proposal submitted by the University of Wales at Swansea and CERFACS to
study algorithms for the free vibration analysis and optimization of complex
vibrating shell structures, which are efficient when implemented on high
performance computers. These examples of collaboration illustrate the effort
to tackle and understand new problems, keeping a good pace to attend on
the future demands.
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Additional documentation

Additional documentation on the mentioned problems as well as
some test problems themselves is available by anonymous ftp at

ftp.cerfacs.fr (138.63.200.222), directory /pub/algo/reports, or at the URL
http://www.cerfacs.fr /algor /algoreports.html.
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